Alternative Fuels – An Industry Overview Loss Prevention Webinar – 21 May 2024

United and the second second

Alternative Fuels – An Industry Overview

Speakers

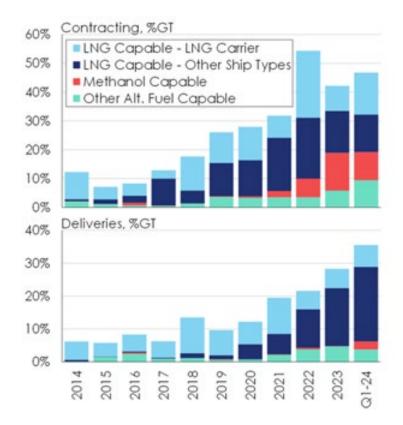
JACOB DAMGAARD

Divisional Director Loss Prevention Britannia P&I

KENNY ENGLISH Associate Director

Waves Group

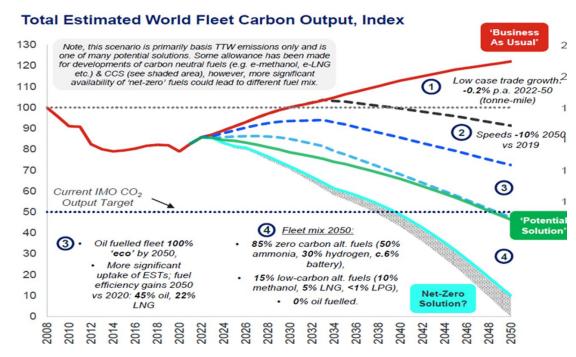
CAPT. RAHUL CHOUDHURI


President Strategic Partnership VPS

Why Alternative Fuels?

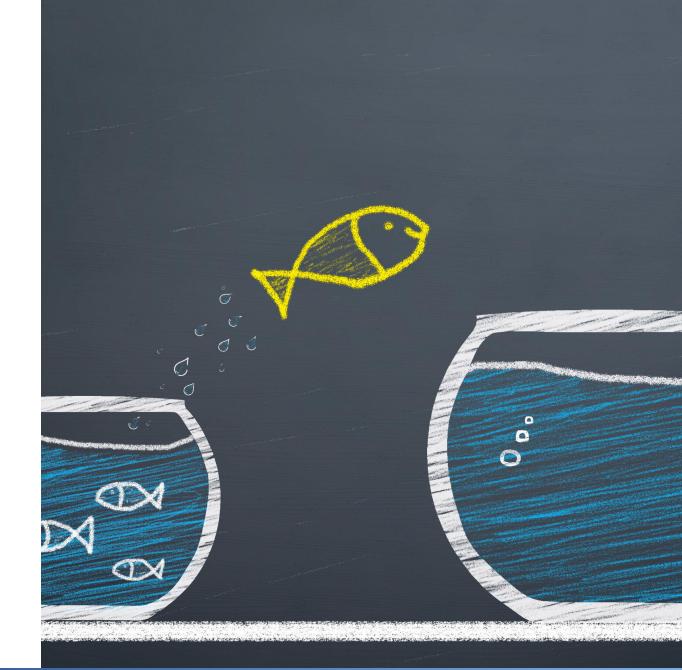
- Meeting requirements and expectations of the future:
 - UN's Paris Agreement on Climate Change to limit global mean temperature increase to well below 2°C of pre-industrial levels, while making efforts to limit warming to 1.5°C
 - IMO's revised strategy on reduction of GHG emissions, reach net-zero GHG emissions by or around 2050
 - A commitment to ensure an uptake of alternative zero and near-zero GHG fuels by 2030, as well as indicative check-points for 2030 and 2040.
- Strong emphasis by many stakeholders to reach net-zero by 2050.

Alternative Fuels What's popular?



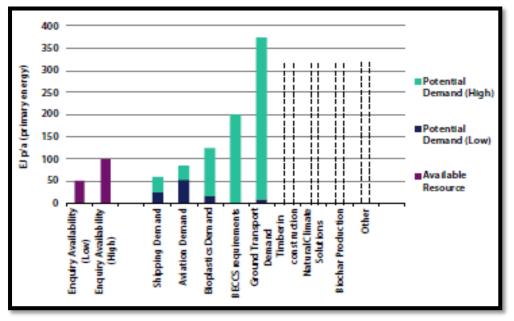
Source : Clarksons Research

Alternative Fuels


- Number of various alternative fuels
- Currently most prominent:
 - LNG
 - Methanol
 - Ammonia
 - Biofuels
- However, can these cover the demand for alternative fuels?
- What about nuclear propulsion?

Transitional Risks

- Risks arising from the transition to a low-carbon economy
- Result in big shifts in asset value or higher cost of doing business
- Likely to be mitigated over time
- Becomes clearer as decarbonisation technology develops



Alternative Fuels

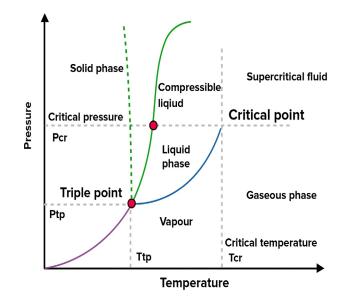
Any Transitional Risks?

- Availability/Infrastructure Operational disruptions
- Quality Lack of standards
- Fuel management Crew training
- Safety risks Lower flash point, toxic (ammonia)
- Fuel pricing Higher cost of doing business
- New legislation Expensive investments

Projected availability of sustainable biofuel by mid-century:

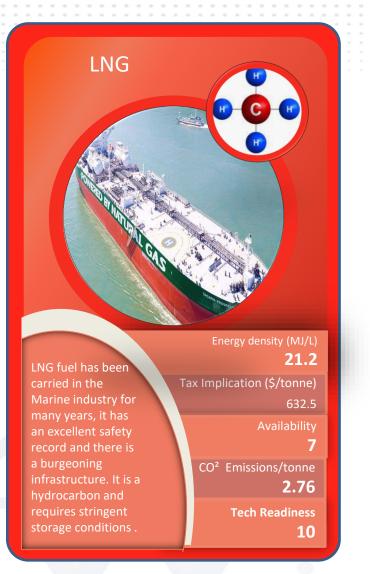
Source: Forum for the future

Alternative Fuels Operational Challenges LNG, Methanol, Ammonia


Kenny English Consultant Marine Engineer k.english@waves-group.co.uk

May 2024

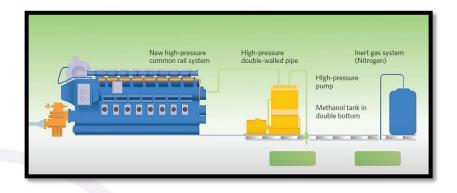
www.waves-group.co.uk


G R O U P

The three Alternative fuels I am speaking about today all have one thing in common and apologies for the physics, but they all have either a boiling point or a flash point below 60 degrees C at atmospheric conditions.

Fuel	Critical point (bar) / (°C)	Flash point ² (°C)	Boiling point (°C)
LNG	46 / -82.6	-188	-163
Ammonia	113 / 132.41	132 ¹	-33
Methanol	82 / 240	11	64.7

WAVES GROUP


- 579 Vessel in Operation.
- 523 LNG fuelled Vessels on order.
- Global warming potential of methane is 28 times CO₂.
- High Capex cost.

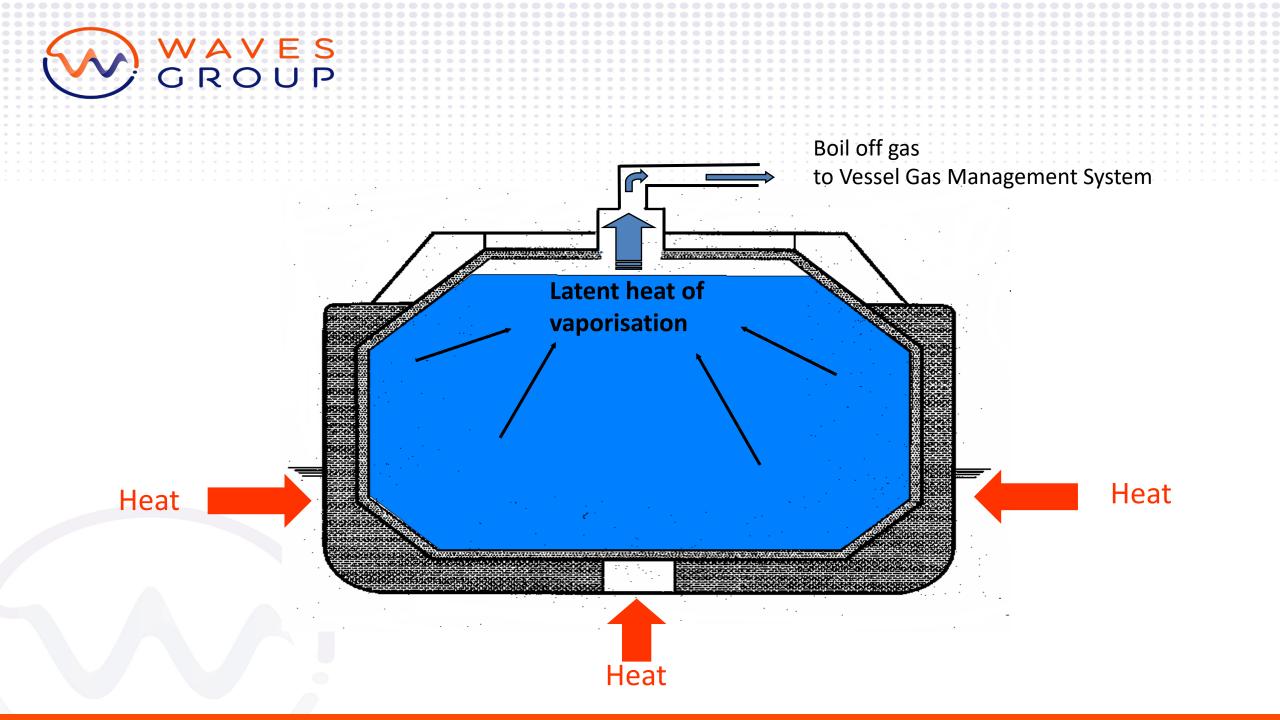
WAVES GROUP

What is the Impact on the Vessel

More Storage Spaces required for the new fuels.

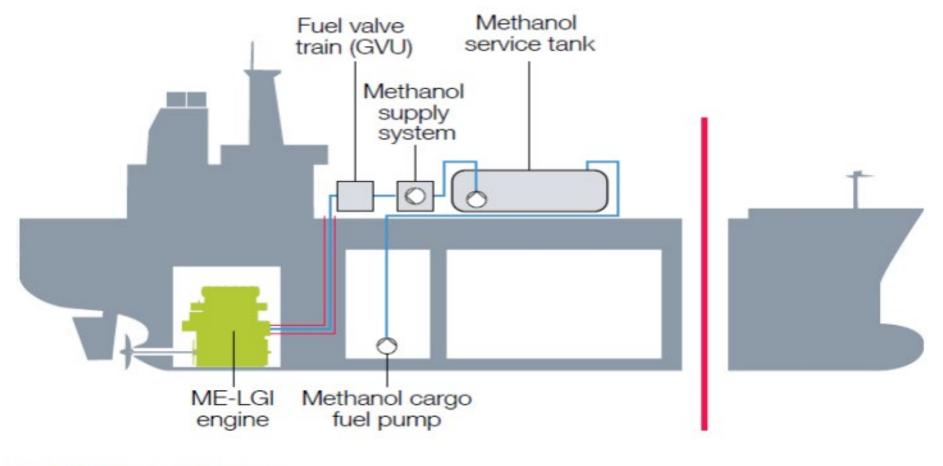
More equipment needed to process and handle the Cryogenic fuels.

G R O U P


o Fire Risk

o Cryogenic Liquid o Increased maintenance o Training requirement

G R O U P



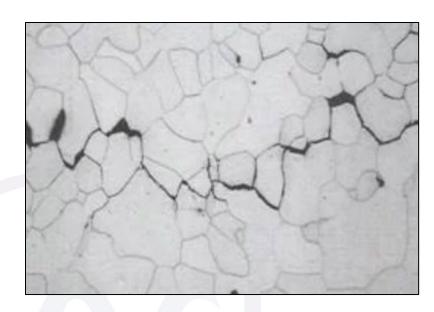
- >29 Vessel in Operation.
- >228 Vessel on order.
- 122 ports with methanol storage so the need for green corridors may be required.

Methano

- High Capex cost.
- Nox Emissions.

Tech On the Ship

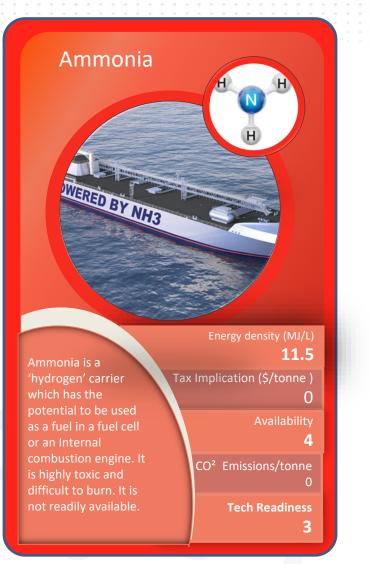
Double-walled pipes


GROUP

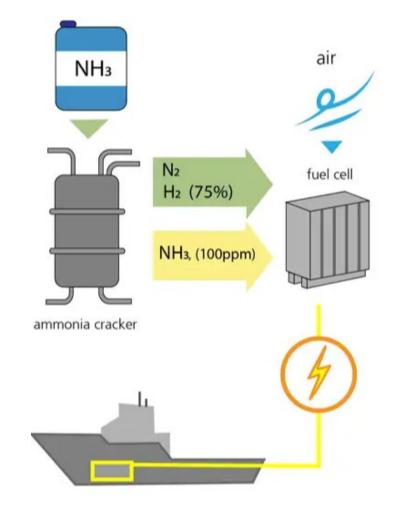
— Single-walled pipes

WAVES GROUP

o Fire Risk


- Corrosive to Carbon steel
 Toxic
- o **Toxic**
- o Training requirement

- 2 Vessels on Order to be delivered 2026.
- High Cost.
- Nox Emissions. Nox is 275 times worse than CO2
- Ammonia ready vessels being produced.


G R O U P

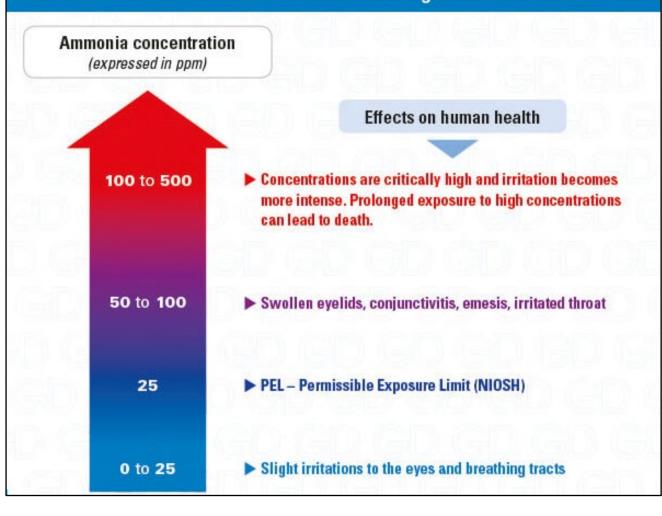
I. C. F

Tech On the Ship

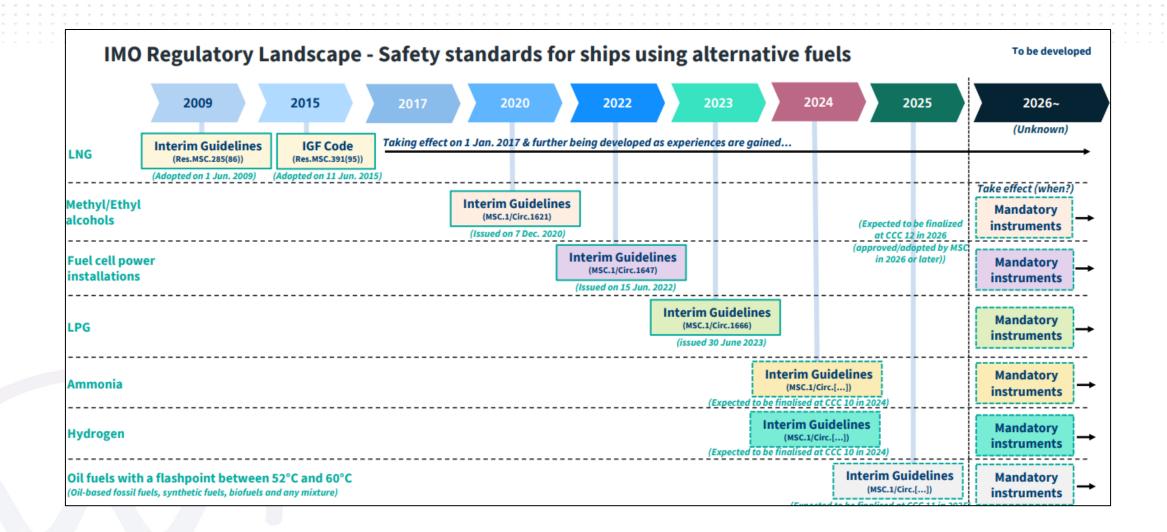
Fuel Cell

Fuel preparation room Fuel storage tank Low-flashpoint fuel supply system - PU Knock-out drums Fuel valve train Nitrogen purging system LPG service tank

G R O U P


 \circ Toxic

Low temperature Storage


o Training requirement.

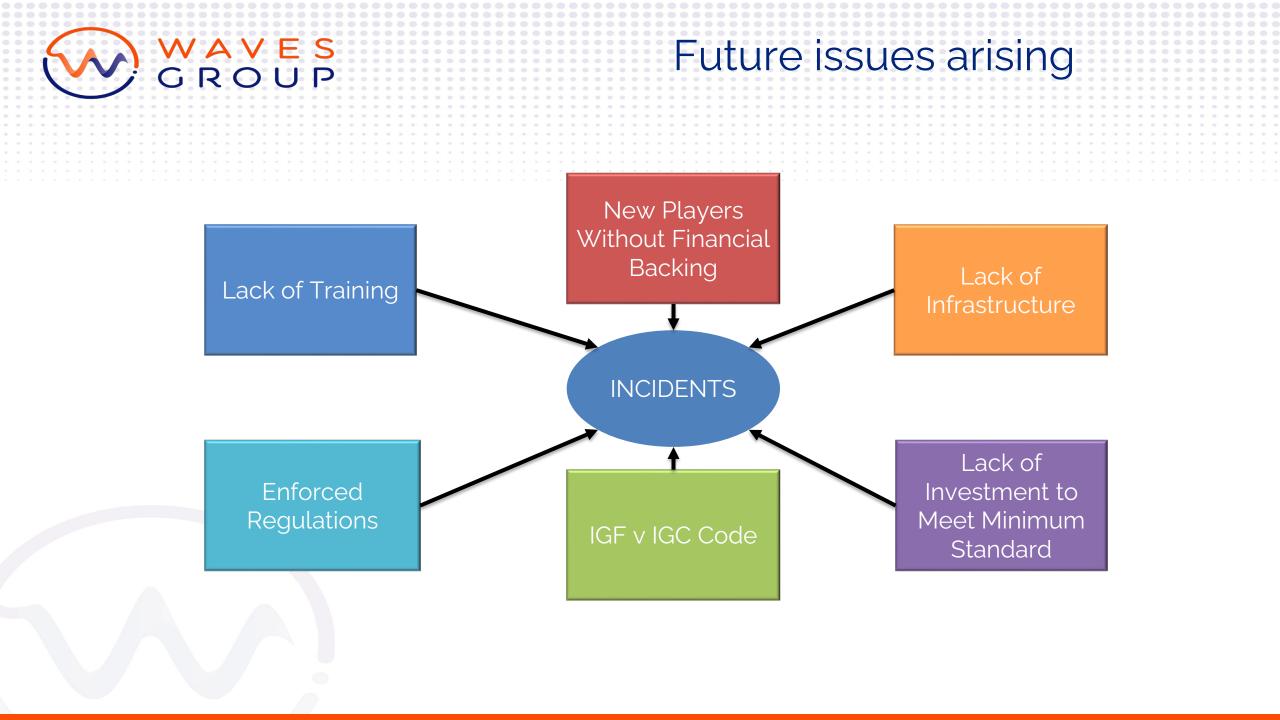
What is the challenge on the Staff

Effects of ammonia (NH₃) on health

WAVES GROUP

WAVES GROUP

o Different fuels require different training


o More trainingo Different training

What will be needed

Thank You!!

Kenny English Consultant Marine Engineer k.english@waves-group.co.uk

www.waves-group.co.uk

Moving Forward

Leading the way for sustainable solutions

Alternative Fuels – focus on Biofuels

Britannia P&I Club Singapore 21st May 2024

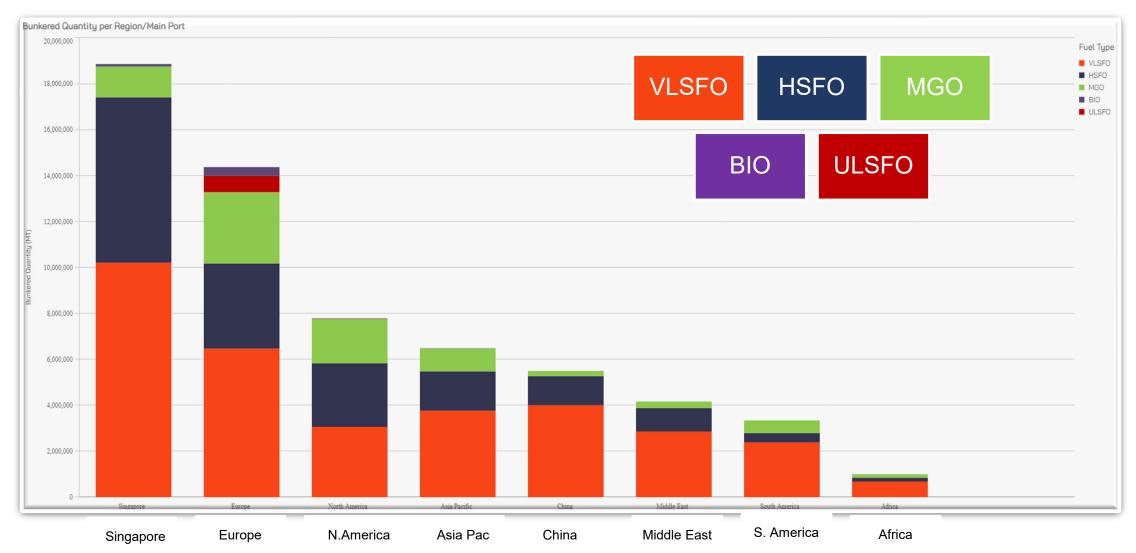
Capt. Rahul Choudhuri President, Strategic Partnerships

VPS | Global reach & local speech

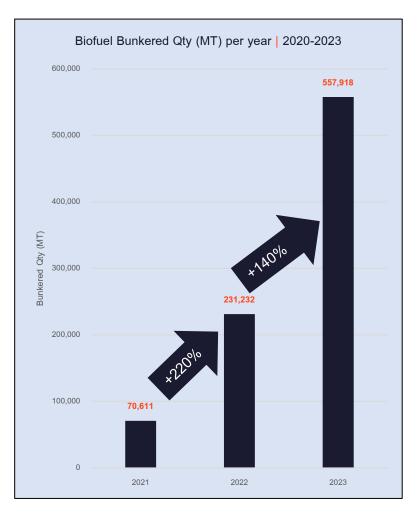
Accelerated by legislative changes, disruptive technologies and new fuels, the maritime industry is **moving forward towards a low-carbon future.**

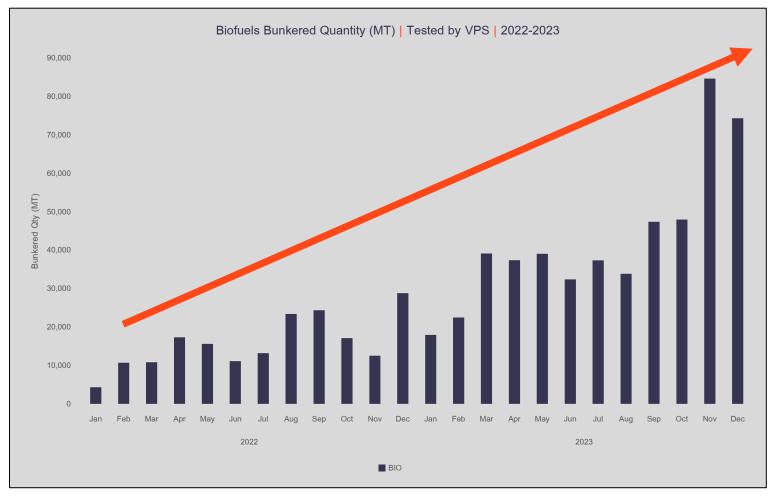
Industry actors are expected to commit to making their operations less carbon-intensive and more sustainable.

VPS helps its customers to identify pathways towards more sustainable operations. We do this by providing insights, digital tools and advice along the entire marine fuels and emissions value chain.


VPS is uniquely positioned to assist with this transition, thanks to

- 1. Over 40 years of experience testing marine fuels
- 2. Expertise in optimising marine operations
- 3. The most robust & reliable emission monitoring tech in the market
- 4. Integrated software portfolio powered by market-leading fuel quality database
- 5. Our holistic view on decarbonising the marine fuels and emissions value chain


By choosing VPS, shipowners and operators can accurately monitor, report and reduce their fleet's emissions, while improving operational performance and mitigating risk.



Bunkered Quantity (MT) by Region 2023

Biofuels Bunkered Quantity increase

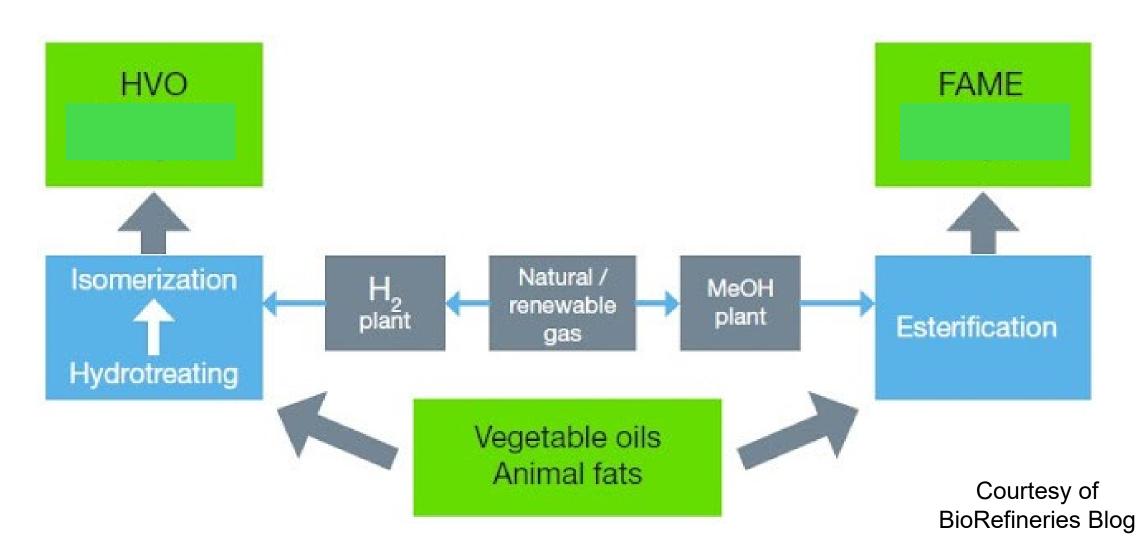
VPS

Biofuels – as part of Sustainability Reporting

TARGETS	MEASURES	STATUS 2023
Expanding the procurement of biofuels	Ensuring the supply of liquid biofuel through contracts with suppliers	Around 213,000 tonnes of bunkered blofuel blend (previous year: around 120,500 tonnes)
Ensuring access to selected alternative fuels at competitive prices in the medium to long term	Dialogue with potential suppliers	Continued dialogue with potential and existing suppliers
SUSTAINABLE PRODUCTS NIR		
SUSTAINABLE PRODUCTS _NFR	MEASURES	STATUS 2023
SUSTAINABLE PRODUCTS _N/R TARGETS Offering customers more sustainable, climate-friendly transport options through the use of biofuels	MEASURES Further Improvements to the Ship Green product	STATUS 2023 Launch of Ship Green, a product for the low-carbon transportation of goods

Courtesy of Hapag-Lloyd Sustainability Report 2023

Biofuels – what we see

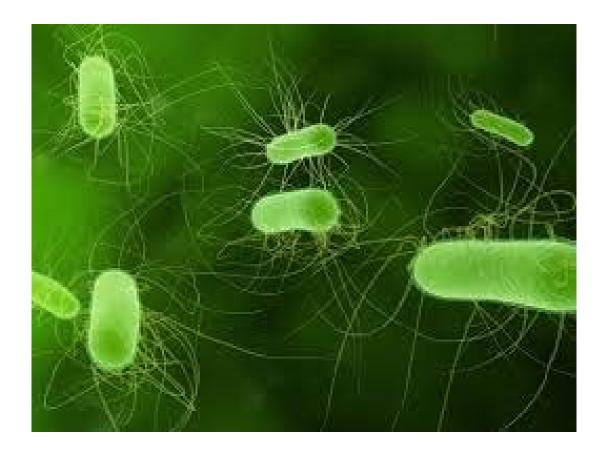


Quality Parameters: MGO vs FAME vs HVO

PARAMETERS	UNIT	DMA typical	100% FAME Vs HVO
Kinematic viscosity @ 40 °C	mm²/s	3.0	5.0 / 3.0
Density @ 15 °C	kg/m³	830 - 850	880 / 780
Sulfur	mg/kg (ppm)	0 - 300	0 – 15 / <0.03
Flash point	°C	>70	100 – 140 / >70
Acid number	mg KOH/g	0.2	0.5/ <0.01
Water	% (v/v)	<0.01	0.05 / <0.01
Fatty Acid Methyl Ester (FAME)	% (m/m)	<0.1	95 – 100 / <0.01
Net calorific value	MJ/kg	43	37 / 44
Cetane number	-	45-55	55 / >74
Oxidation Stability @110°C	hours	>24	>8 / >48
Total sediment	% (m/m)	<0.01	<0.01
Oxygen	% (m/m)	0.9	10.5 / <0.02

FAME & HVO production

Biofuel - FAME Characteristics

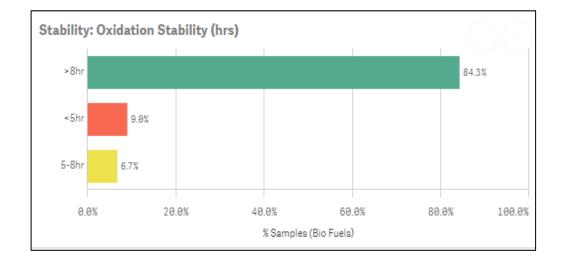


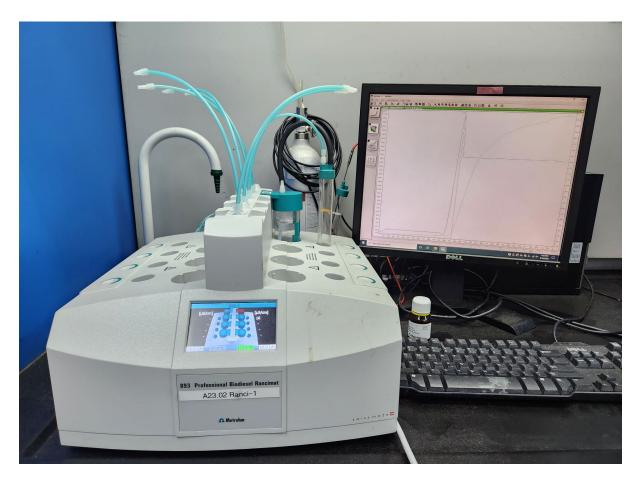
Greater affinity towards water

Poor cold flow property

Long-term stability

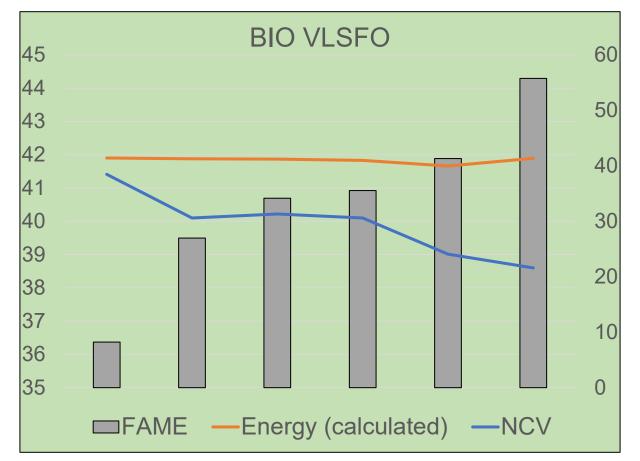
Material compatibility

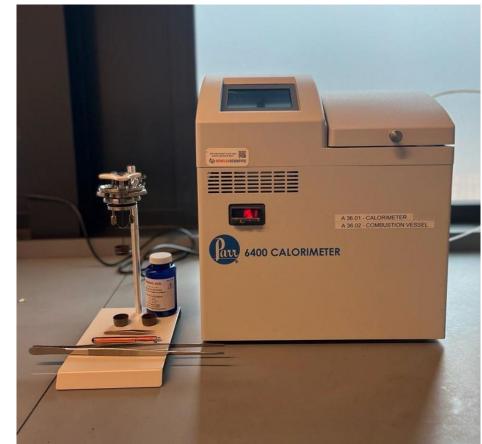

Biofuel - Stability



Less stable

Unsaturated content


Oxidation



Biofuel – Energy Content

Bio-APS for Bio-MGO Blends

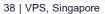
Parameter	Spec Limit	Test Method	Purpose of Test
ISO 8217 Test Slate	various	As specified in ISO8217 standard	Ensure fuel is fit for use as bunker fuel
FAME content	N/A	ASTM D7371/EN 14078 modified	Accurate measure of renewable C content
Net Calorific Value	N/A	ASTM D240	Accurate measure of CV (usual calculation method does not work for biofuels)
CP Cloud Point	N/A	EN ISO2015 modified (LP1305)	Cold-flow property
Bacteria, Yeast Fungi	N/A	LP2301	Microbiological activity
Cetane Index	min 40	ASTM D4264	Combustion property
Oxidation stability (at 110 °C) - Rancimat	min 8.0 hr	EN 15751	Stability of the biofuel
lodine value	max 120g l/100g	EN 14111	Susceptibility to oxidise
TAN / Acid Value	max 0.5 mg KOH/g	ASTM D664	Corrosivity
Sulfur content (ppm)	N/A	ASTM D4294	Understand level of lubricity in the fuel
Lubricity (HFRR)	Max 520	EN ISO12156-1	Poor lubricity due to low S levels

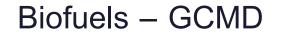
Parameter	Spec Limit	Test Method	Purpose of Test
ISO 8217 Test Slate	various	As specified in ISO8217 standard	Ensure fuel is fit for use as bunker fuel
FAME content	N/A	ASTM D7371/EN 14078 modified	Accurate measure of renewable C content
Net Calorific Value	N/A	ASTM D240	Accurate measure of CV (usual calculation method does not work for biofuels)
WAT/WDT	N/A	LP1307	Cold-flow property (WAT needed due to dark colour of oil)
Bacteria, Yeast Fungi	N/A	LP2301	Microbiological activity
Oxidation stability (at 110 °C) - Rancimat	min 8.0 hr	EN 15751	Stability
lodine value	max 120g l/100g	EN 14111	Susceptibility to oxidise
TAN / Acid Value	max 0.5 mg KOH/g	ASTM D664	Corrosivity

100% FAME – ISO14214

Parameter	Test Method	Spec Limit		Analytical Technique
		min max		
FAME content	EN14103	96.5%		GC
Density at 15 °C	EN ISO 12185	860	900	
Viscosity at 40 °C	EN ISO 3104	3.50	5.00	
Net Calorific Value	ASTM D240		N/A	Calorimeter
Flash point	EN ISO 2719	101° C		
Cetane Index	ASTM D4264	51.0		
Copper strip corrosion (3 h at 50, 100, 150°C)	ASTM D130	Class 1		
Steel corrosion @ 20,60, 120°C	LP2902	N/A		
Oxidation stability (at 110 °C)	EN 15751	8.0 hr		Rancimat
TAN / Acid value	ASTM D664		0.5 mg KOH/g	Autotitrator
lodine value	EN 14111		120g l/100g	Manual Titration
Water content	ASTM D6304		0.05%	Karl Fischer
Sulfated ash content	ASTM D874		0.02%	
Sulfur content (ppm)	ASTM D4294		10ppm	
Group I metals (Na+K)	IP501		5.0ppm	ICP
Group II metals (Ca+Mg)	IP501		5.0ppm	ICP
Phosphorus content	IP501		4.0ppm	ICP
Linolenic acid methyl ester	EN 14103		12.0%	GC
Methanol content	EN 14110		0.20%	GC
Monoglyceride, Diglyceride, Triglyceride content	EN 14105		0.7%, 0.2%, 0.2%	GC
Free glycerol	EN 14105		0.02%	GC
Total glycerol	EN 14105		0.25%	GC

Biofuels – Standards development


• Awareness


- Understanding Biofuel characteristic
- Setting robust quality control

WORKSHOP AGREEMENT
Specification for marine biofuel

WA 2:2022 (ICS 03.120.99; 47.020.20)

GCMD and NYK Line team up to address concerns of long-term, continuous biofuels use on vessel operation

Published on

9 May 2024

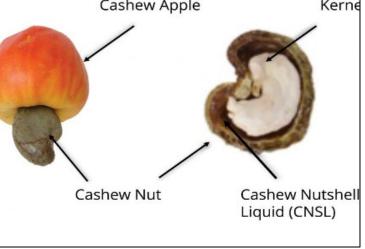
Ø

in

PR	ESS	REL	.EAS	E

GCMD and NYK Line team up to address concerns of long-term, continuous biofuels use on vessel operations

 The consortium will launch a six-month trial of biofuels use to understand their impact on engine performance and onboard systems operations.


Singapore / Tokyo: 9 May 2024 – The Global Centre for Maritime Decarbonisation (GCMD) has teamed up with NYK Line to launch Project LOTUS (long-term impact of continuous use of biofuels on vessel operations). This six-month project will trial the continuous use of a biofuels blend comprising of

Cashew Nut Shell Liquid (CNSL)

- Natural resin from shell
- Renewable & sustainable, valuable by-product
- Primarily made up of Anacardic acid, Cardols &
 - Cardanols basically Phenols
- Production 1 M mtons / year ~
- Used on Friction materials like brake lining, paint coatings
- Industrial use since early 1900's
- Structure allows direct blend as a Biofuel.

CNSL-Blended Fuels Experience

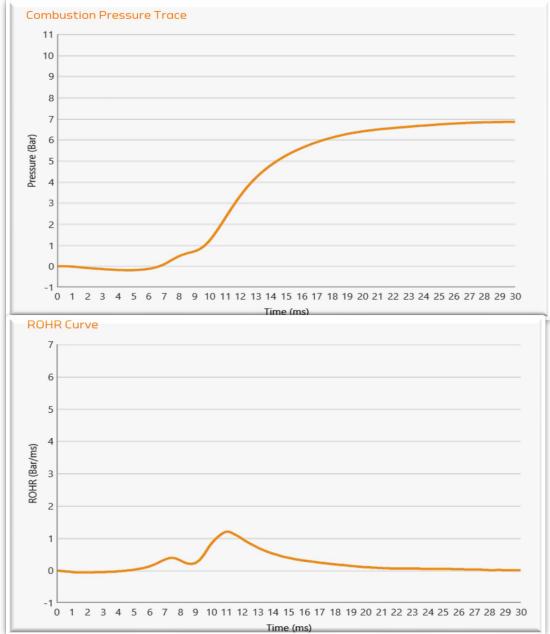
- CNSL-blended fuels with MGO, VLSFO or HSFO have shown mixed reactions to vessel operations.
- Some CNSL-blends have been stored and burnt without issue.
- Some CNSL-blends have given rise to operational problems such as:
 - Fuel sludging
 - Fuel injector failure
 - Corrosion of engine parts
 - Filter clogging
 - Fuel system deposits
 - Corrosion of turbocharger nozzle rings
 - Damage to Selective Catalytic Reactor (SCR) units.

CNSL contains reactive phenolic compounds making them prone to polymerization forming gums and fuel deposits

Handling and Use of CNSL & CNSL-Blends

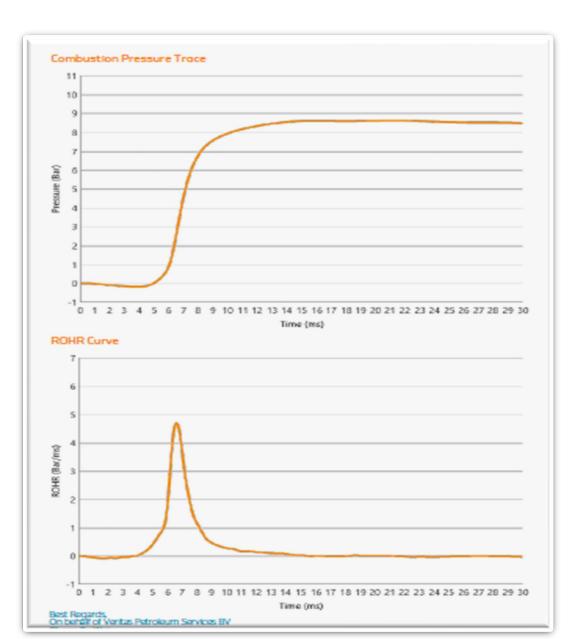
- Do not use 100% CNSL as a marine fuel.
- Traditional marine fuels blended with CNSL, may reduce the high acid number, reactivity and potassium levels of 100% CNSL, but increase energy content, sulphur, cold-flow and sediment potential issues.
- Check with the OEM regarding the compatibility of CNSL-based biodiesel blended products.
- When CNSL is heated above 200°C it will polymerise.
- Avoid storage period over three months, if extended storage is unavoidable carry out periodic sampling and testing every 2-3 months to test for acid number, iodine value, plus ISO8217.
- The absence of sulphur in CNSL will require marine engine lubrication oils with low TBN and high detergency in order to provide efficient engine lubrication and prevent scuffing.
- Material compatibility CNSL is highly reactive and therefore could have compatibility issues when in contact with certain materials.
- The use of CNSL blends can significantly reduce HC, CO/CO₂ and smoke emissions, although they raise NOx emissions slightly.

Tyre Pyrolysis Oil (TPO)


- Waste tyre disposal concerns 1970's, renewable resource
- Commercialised early 2000
- Composition complex primarily Aromatic(e.g. Benzene) &
 Oxygenate(e.g. Phenols) compounds
- Used in industrial boilers, asphalt binder in road construction
- Needs esterification before use as Biofuel blend improve fuel property(e.g. ignition quality), reduce contaminant(e.g. phenols), enhance stability.

UPS

Fuel Combustion Analysis – HSFO (80%)/TPO (20%)


Fuel Ignition & combust	ion test results - IP 5	541/06	
Description	Parameter	Value	Unit
Estimated Cetane Number	ECN	11.8	-
Ignition Delay	ID	6.95	ms
Main Combustion Delay	MCD	8.95	ms
End of Main Combustion	EMC	18.80	ms
End of Combustion	EC	29.97	ms
Pre-Combustion Period	PCP	2.00	ms
Main Combustion Period	MCP	9.85	ms
After Burning Period	ABP	11.17	ms
Max ROHR Level	MRL	1.20	bar/ms
Position of Max ROHR	PMR	11.11	ms
Accumulatied ROHR	AR	6.80	Bar
Max Pressure Increase	MaxP	6.94	Bar

VPS

Fuel Combustion Analysis – HSFO (100%)

Dansity @ 15*C	9616 kg/m3		
Vscosity @ 50°C	532 mm2/s		
Sultur	170 %m/m		
CCAI (ignition Quality/	E33 - Calculated value		
Fuel Ignition & combust			
Description	Parameter	Value	Unit
Estimated Cetane Number	ECN	27.2	-
gnition Delay	D	521	ms
Main Combustion Delay	MCD	605	ms
End of Main Combustion	EMC	9.46	ms.
End of Combustion	EC	14.16	ms
Pre-Combustion Period	PCP	0.84	ms
Main Combustion Period	MCP	342	ms
After Burning Period	ABP	469	ms
Max ROHR Level	MRL.	470	bar/ms
Position of Max ROHR	PMR	665	ms.
Accumulativid ROHR	AR	847	Bar
Max Prossure Increase	MaxP	864	Bar

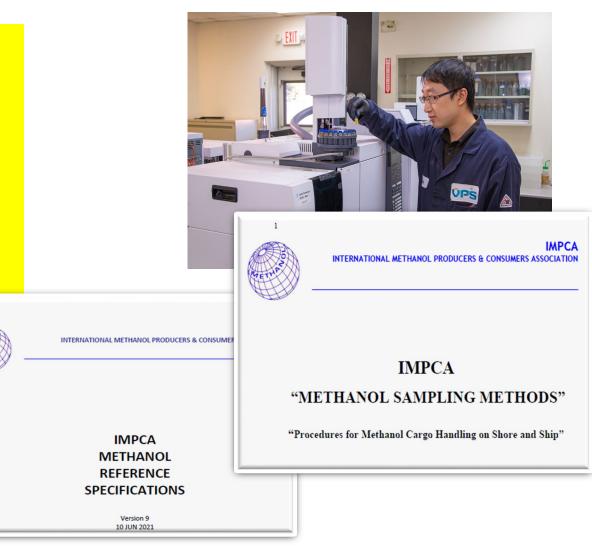
EXPERIENCE
INNOVATION
SUSTAINABILITY

VPS

Methanol as fuel

VPS – First Methanol Bunkering

- VPS engaged by Maersk to survey, sample and test the first methanol bunkering in Singapore July 2023, for the Laura Maersk.
- Bunkering practices required heightened H&S procedures, e.g. tank cleaning, closed sampling device, glass sample bottles.
- Biofuel used as the Pilot-Fuel.
- Samples dispatched for testing under IATA regulations.
- Samples tested to the International Methanol Producers and Consumers Association (IMPCA) standard were a close match to the COQ.
- Further surveys and quality testing took place in Port Said and Rotterdam during the vessels eastbound voyage to Denmark.



Methanol – Testing Considerations

Methanol key testing considerations:

- Calorific Value
- Methanol content
- Ethanol content
- Water
- Acetone
- Chloride
- Acidity (Acetic Acid)
- Sulphur
- Appearance
- Purity & Impurities
- IMPCA Quality Specifications & ISO 6583(DIS)



Thank You

For more information: lossprevention@tindallriley.com

BRITANNIA P&I CLUB

Twitter: @britanniapandi | Instagram: @britanniapandi LinkedIn: https://www.linkedin.com/company/britannia-p-i-club/